Course Outcomes – Program Outcomes (COPO) Mapping

Program Outcomes (PO): B.S.C. (Hons) Biochemistry

Undergraduate Curriculum Framework (UGCF) National Education Policy (NEP)

The Preamble of the Undergraduate Curriculum Framework-2022 underlines the historical perspective, philosophical basis, and contemporary realities of higher education as enshrined in the National Education Policy 2020 and endeavours to synchronize these cornerstones while charting the road ahead for the state of higher education.

ABBREVIATIONS / NOMENCLATURE

Sno.	Nomenclature	Description	Aggregate Courses
1	PO	Program Outcome	PO1, PO2, PO3, PO4, PO5,
			PO6, PO7, PO8, PO9,
			PO10
2	CO	Course Outcome	CO1, CO2, CO3. CO4,
			CO5
3	DSC	Core Courses	DSC1, DSC2,
			DSC3DSC11, DSC12
4	DSE	Discipline Specific	DSE1, DSE2
		Electives	
5	GE	General Electives	GE1

Sno.	Program Outcomes (PO): B.A. (H) Economics	Statements
1.	PO1	Inculcate the basic concepts of biochemistry including an understanding of the fundamental biochemical principles and their applications in a systematic, methodical, scientific, evidence-based process. The programme will also provide a general understanding of the related disciplines with a holistic knowledge generation in biological sciences.
2.	PO2 (Laboratory Outcome)	Develop problem solving and analytical skills through case studies, research papers and hands-on-experience, especially integrated into skill enhancement courses.
3.	PO3 (Laboratory Outcome)	Students will gain proficiency in basic laboratory techniques and be able to apply the scientific method to the processes of experimentation, hypothesis testing, data interpretation and logical conclusions.
4.	PO4(Laboratory Outcome)	Provide requisite knowledge of laboratory safety, data replication and quality control, record keeping and other aspects of "responsible conduct of research".
5.	PO5	Ability to employ modern library search tools to locate and retrieve primary literature on a topic and critically evaluate the literature.
6.	PO6	Students will be able to apply and effectively communicate scientific reasoning and data analysis in both written and oral forms. They will be able to communicate effectively with 11 well-designed posters and slides in talks aimed at scientific audiences as well as the general public.
7.	PO7	Students will learn to work collaboratively in a team.
8.	PO8(Laboratory Outcome)	Students will gain knowledge of ethical and good laboratory practices, health and biohazard regulations, plagiarism and intellectual property rights related issues practiced in modern era of scientific investigation.
9.	PO9	Graduates will be able to apply the major theories and research procedures to contemporary societal issues.
10.	PO10	The programme will prepare students to plunge into various fields of higher education or related profession in various disciplines, armed with plethora of knowledge, hands-on experience and scientific attitude, at national and global levels.

Course Outcomes (CO): B.S.C (Hons) Biochemistry

SEMESTER I:

DSC1: Biomolecules

Unique Paper Code	Name of the Paper	Course Outcome: CO	Statement
		CO1	Able to comprehend the structure, function and acid base properties of amino acids.
		CO2	Introduced to the structure, properties and roles of carbohydrates, lipids and nucleic acids.
2492011101	Biomolecules (DSC1)	CO3	Aware of the importance of vitamins in biological systems.
		CO4	Able to independently identify various biomolecules in the laboratory.
		CO5	Acquainted with chemical and molecular foundations of life and appreciate the role of water in biological systems.

DSC2: Proteins

		CO1	Understand the diverse functions of proteins in a cell.
		CO2	Understand the hierarchy of protein architecture—primary, secondary, tertiary & quaternary structure, with the ability to distinguish features of globular & fibrous proteins.
2492011102 Pi	Proteins (DSC2)	CO3	Be able to comprehend the fundamental mechanisms of protein folding and stability and their relation to conformational diseases.
		CO4	Understand specialized proteins like membrane proteins, defense proteins and motor proteins.
		CO5	Gain comprehension of structure- function relationship of proteins and their significance in physiology, diseases and applications in industry and medicine.

DSC3: Biochemical Techniques

		CO1	Acquire knowledge about the principles and applications of spectrophotometric and chromatography techniques used in a biochemistry lab.
2492011103	Biochemical Techniques (DSC3)	CO2	Learn about the principle and application of electrophoresis, centrifugation techniques, cell culture and microscopic techniques.
		CO3	Will be able to identify biochemical techniques for separation and purification of biomolecules.
		CO4	Students will obtain hands on experience to develop their experimental skills expected from any biochemistry student working in a research lab.
	GE1 : Pu	blic Health Bi	ology
		T	
		CO1	Students will get a holistic overview of the interdisciplinary nature of Public health
		CO2	They will understand public health issues in India particularly related to Malnutrition, Sanitation issues and related burden of infectious disease, and the role of pollution as a public health concern.
2494001002	Public Health Biology (GE 1)	CO3	The students will also get an understanding of the public policies applicable and implemented in India.
		CO4	They will also be able to appreciate the social aspects that govern many public health issues and implementation of policies.
		CO5	The students will get hands- on training in epidemiology, preparation of questionnaire and collection of primary and secondary data relevant to public health issues.
		CO5	They will also learn to present the relevant data after subjecting it to statistical analysis.

		SEMESTER I: COPO MAPPING									
Papers		(PO)									
	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	✓						✓			
	CO2	✓						✓			
DSC1	CO3	✓						✓			

	CO4	✓		✓				✓			
	CO5	✓						✓			
	CO1	✓						✓			
	CO2	✓						✓			
DSC2	CO3	✓				✓	✓	✓			
	CO4	✓						✓			
	CO5	✓				✓	✓	✓		✓	
	CO1	✓				✓		✓			
DSC3	CO2	✓						✓			
	CO3	✓						✓			
	CO4	✓	✓	✓	✓	✓		√			
	CO1	✓		·	·		·	✓			·
	CO2	✓		·	·		·	√			·
GE 1	CO3	✓				✓	✓	✓	-		·
	CO4	✓						✓			
	CO5	✓				✓	✓	✓		✓	

SEMESTER II										
	DSC4:- Enzymes									
		CO1	Students will learn the nature and importance of enzymes in living systems.							
		CO2	Students will gain insight into the thermodynamic and molecular basis of catalysis by enzymes and the underlying basis of their specificity.							
2492011201	Enzyme (DSC4)	CO3	Students will understand the mechanisms of enzyme action, kinetics of enzyme catalyzed reactions and clinical importance of enzyme inhibitors.							
		CO4	Students will also learn to appreciate how enzymes are regulated and the physiological importance of enzyme regulation in the cell.							
		CO5	The course will introduce students to the applications of enzymes in research and medicine as well as in industry, which will bolster their foray into industrial and biomedical research.							
	DSC5:- Meta	abolism of Car	bohydrates							

	Metabolism of Carbohydrates (DSC5)	CO1	Concept of metabolism, characteristics of metabolic pathways and strategies used to study these pathways.
2492011202		CO2	Detailed knowledge of various pathways involved in carbohydrate metabolism with the enzyme involved and regulation
		CO3	Diseases caused by defects in metabolism with emphasis on the metabolic control and cure of diseases.
		CO4	Understanding of various metabolic pathways in animals.
	DSC6:- Basic	Concepts of c	ell Biology
		CO1	Insights into the basic structure and function of the cell and cellular organelles
2492011203	Basic Concepts of cell Biology (DSC6)	CO2	Introduction to the concept of model systems, cell division and cell to cell interaction.
		CO3	Understanding of the structural framework of the cell as cytoskeletal structure.
		CO4	Knowledge of various techniques used in cell biology experiments.

		SEMESTER II: COPO MAPPING									
Papers						(PO)					
	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	✓						✓			
DSC4	CO2	✓						✓			
	CO3	✓						✓			
	CO4	✓						✓			
	CO5	✓	✓			✓	✓	✓		✓	
	CO1	✓						✓			
	CO2	✓						✓			
DSC5	CO3	✓					✓	✓		✓	
	CO4	✓						✓			
		•				•			•	•	
	CO1	✓						✓		✓	
DSC6	CO2	✓						✓		✓	
	CO3	✓						✓			

	Se	emester:- III	
	DSC7- M	etabolism of	Lipids
2492012301	Metabolism of Lipids	CO1	Explain the concepts of metabolism of lipids, characteristics of metabolic pathways and strategies used to study these pathways.
	(DSC7)	CO2	Apply the knowledge of various catabolic and anabolic pathways in lipid metabolismand their regulation.
		CO3	Describe the diseases caused by defects in metabolism with emphasis on metaboliccontrol.
	DSC8	:- Bioenerget	tics
		CO1	Describe the basic tenets of thermodynamics and energy transformations that are taking place in the cell
2492012302	Bioenergetics (DSC8)	CO2	Explain the biological oxidation-reduction reactions and the mechanisms of electron transfer by electron carriers.
		CO3	Appreciate the concept of chemiosmotic theory and the mechanism of oxidative phosphorylation and ATP synthesis.
		CO4	Elaborate the basic mechanisms photophosphorylation in plants and microbes.
	DSC9:- I	Membrane B	iology
		CO1	Explain the general composition and structure of biomembranes.
		CO2	Describe the basic properties of membranes such as membrane fluidity.
2492012303	Membrane Biology (DSC9)	CO3	Elaborate various types of membrane transport mechanisms.

CO4

		CO4	Apply the knowledge gained about the molecular mechanism of vesicular transport and membrane fusion to understand the functioning of cells.						
	DSE1:- Microbiology								
		CO1	Identify different types of microbes.						
2493012003	Microbiology (DSE1)	CO2	Perform routine microbiological practices including sterilization, media preparation, maintenance of microbial culture, microbial growth etc.						
		CO3	Carry out basic research using microbes.						
		CO4	Describe varied applications of microbes.						

				SEME	STER	III: CO	PO MA	PPING			
Papers						(PO)					
	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	✓				✓		✓			
	CO2	✓				✓		✓			
DSC7	CO3	√				√		√		✓	
	CO1	✓						✓			
	CO2	✓						✓			
DSC8	CO3	✓				✓		✓		✓	
	CO4	✓				✓		✓		✓	
	CO1	✓				✓		✓		✓	
DSC9	CO2	✓						✓			
	CO3	✓						✓			
	CO4	✓				✓		✓		✓	
	CO1	✓		✓	✓						
DSE 1	CO2	✓		✓	✓				✓		
	CO3	✓		✓	✓	✓			✓		
	CO4	✓	•	✓	✓	✓			✓	✓	

Semester:- IV
DSC10:- Metabolism of Amino Acids and Nucleotides

		CO1	Explain the importance of nitrogen cycle.				
		CO2	Explain the degradation and biosynthetic pathways of amino acids and nucleotides in humans.				
2492012401	Metabolism of Amino Acids and Nucleotides (DSC10)	CO3	Discuss the importance of amino acids as precursors to a variety of important biomolecules.				
		CO4	Examine the role of inhibitors of nucleotide metabolism as chemotherapeutic drugs.				
		CO5	Discuss the integration of the amino acid, nucleotide, carbohydrate and lipid metabolism.				
	DSC11-Hormones	: Biochemistr	ry and Function				
		CO1	Explain the molecular mechanism and signaling pathways mediating Hormone Action.				
2492012402	Hormones: Biochemistry and Function (DSC11)	CO2	Describe the physiological role of each hormone in regulating growth, appetite, metabolism and reproduction.				
		CO3	Examine the regulatory mechanisms regulating Hormone secretion and release.				
		CO4	Discuss the basis of endocrine diseases taking case studies.				
	DSC12-Gene Organi	zation, Replic	cation and Repair				
		CO1	Analyse the structure of DNA and various forms of DNA and learn about organisation of genome in various lift forms, supercoiling of DNA and it significance.				
	Gene Organization,	CO2	Perform isolation of DNA and analyse the purity of isolated DNA sample.				
2492012403	Replication and Repair (DSC12)	CO3	Evaluate the molecular basis of processes like DNA replication, recombination and transposition and demonstrate the significance of these processes.				
		CO4	Perform various methods of DNA estimation.				
		CO5	Discuss the various ways in which the DNA can be damaged leading to				

			mutations, lesions and repair mechanisms.						
DSE2- Nutritional Biochemistry									
	Nutritional Biochemistry (DSE2)	CO1	Critically analyse and evaluate concepts in nutritional biochemistry that are important for an understanding of human nutrition.						
2493012005		CO2	Demonstrate the relationship between nutrition and health.						
		CO3	Discuss the macro and micronutrients and their nutritional deficiencies.						
		CO4	Describe techniques used in the assessment of nutritional status and nutritional disorders.						
		CO5	Explain drug nutrient interactions.						

				SEME	STER	IV: CO	PO MA	PPING			
Papers	(PO)										
	CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	✓						✓			
DSC10	CO2	✓						✓			
	CO3	✓				✓		✓			
	CO4	✓				✓	✓	✓		✓	
	CO5	✓				✓	✓	✓			
	CO1	✓				✓		✓			
	CO2	✓				✓		✓			
DSC11	CO3	✓				✓		✓	✓		
	CO4	✓	✓			✓		✓	✓		
	CO1	✓						✓			
DSC12	CO2	✓	✓	✓	✓			✓			
	CO3	✓				✓		✓			
	CO4	✓	✓	✓	✓	✓		✓	✓		
	CO5	✓				✓		✓			✓
	•	•				•	•				•
	CO1	✓						✓			
DSE2	CO2	✓				✓		✓			
	CO3	✓						✓			
	CO4	✓	✓	✓	✓		✓	✓			
	CO5	✓					✓	✓		✓	✓